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WE ALSO NEED COMPLETE BEHAVIORAL MODELS

WILLIAM R. HUTCHISON

BEHAVIOR SYSTEMS, LLC

I am very pleased to see Donahoe, Palmer,
and Burgos foster this important discussion
with a very clear and cogent paper. I find
their reasoning inescapable that environ-
ment–behavior relations are what is always
conditioned. My own computer model of op-
erant behavior is built on the same assump-
tions (Hutchison, 1984, 1985, 1995, 1997; Ste-
phens & Hutchison, 1993), and the many
simulations I have done are uniformly sup-
portive of their claim that a single model can
produce discriminated and undiscriminated
conditioning in a wide variety of situations
(e.g., Hutchison, 1997). I hope I can now
come out of the closet without having to wear
a scarlet S-R on my chest.

I also strongly agree with Donahoe et al.
regarding the value of computer modeling as
a scientific tool. Donahoe and Palmer (1994)
describe computer simulations as formal in-
terpretation (p. 128), automatically ‘‘reason-
ing’’ or predicting from a set of assumptions
to their implications. All scientists are con-
stantly making predictions from theoretical
formulations, both in designing experiments
and in judging the congruence of data with
predictions from various formulations. Just as
we use a computer spreadsheet to ask ‘‘what
if?’’ questions when data get too complicated
to manage on paper, we can use a computer
model to ask ‘‘what if?’’ questions of compli-
cated behavioral relations. Our subject matter
concerns environment–behavior systems that
complicate enormously as the history of the
organism develops. In my opinion, computer
models are essential for further progress in
our discipline, and they imply no necessary
compromise of our radical behavioral philos-
ophy of science. Quantitative behavior ana-
lysts are increasingly using these tools in valu-
able ways; for example, simulating how
molecular conditioning processes that occur
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at each reinforcing event in variable sched-
ules can account for some of the deviations
from the matching law at a molar level. The
analyses could in principle have been done
on paper, but no scientist would take the time
to do so.

A common misunderstanding is that com-
puter modelers are substituting computer
data for real animal data. On the contrary,
computer simulations are almost always ana-
logues of well-known animal research. A sim-
ulation should not be called an experiment, be-
cause it produces no new data; rather, it
produces predictions of the data that should
be observed in animals if the theory being
tested is correct. The common tendency to
call them experiments probably arises be-
cause they seem to have a subject and an en-
vironment, and the outcome is unknown to
the researcher at the beginning. The parallel
seems even stronger when the model or train-
ing uses randomization, which is known to
affect the outcomes significantly in many
cases. But everything on the computer is de-
terministic: Even ‘‘random’’ events are actu-
ally pseudorandom. The outcomes of simu-
lations are completely determined and
perfectly replicable. They cannot substitute
for experiments on the behavior of intact or-
ganisms.

Do Behavioral Models Need Neural
Plausibility?

I believe that Donahoe et al.’s approach to
computer modeling with an emphasis on
neurological plausibility is valuable, and in
the long run essential. However, this does not
imply that it is the only valid or even pre-
ferred way other behavior analysts should ap-
proach modeling. On the contrary, it is pre-
mature to impose a criterion of neurological
plausibility; doing so forces working with in-
complete models of behaving systems, which
in turn can lead to erroneous conclusions.
These points are readily illustrated by two ex-
amples from Donahoe et al.
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The authors overstate our understanding
of the brain. Even as I was writing these com-
ments, I listened to a distinguished neuro-
scientist express ‘‘bafflement’’ that anyone
would depend on current knowledge of the
brain for behavioral models. Even individual
neurons and synaptic processes are extraor-
dinarily complex, apart from the complexity
of the brain as a system, and in a complex
system, even revising the view of how a single
element works can drastically change the view
of how the rest of the system works.

The authors have previously made a prag-
matic argument for imposing neural plausi-
bility (Donahoe, Burgos, & Palmer, 1993),
pointing out how Darwin’s theory of evolu-
tion was not widely accepted until the mech-
anisms of genetics were discovered. They ar-
gued that biological plausibility of our
learning models was analogously important
to persuade critics that there is a mechanism
underlying it. However, the analogy breaks
down because there is widespread acceptance
of the brain as a sufficient mechanism for
learning, even if we do not understand the
details very well. On the other hand, there is
great skepticism that learning can account for
complex behavior such as language, an issue
for which behavioral modeling is better suit-
ed to resolve.

Computer modeling of behavior can be
done using purely behavioral formulations
such as that of Rescorla and Wagner (1972)
and behavioral economics (see JEAB, Vol. 64,
pp. 257–431, 1995) rather than using neuro-
logically based assumptions. Donahoe and
Palmer (1994, p. 149) acknowledge that ‘‘The
considerations that should inform computer
simulations is a matter of current controver-
sy,’’ but Donahoe et al. conclude that ‘‘to be
congenial with behavior analysis, all intraor-
ganismic events must be the product of inde-
pendent biobehavioral research’’ (p. 203).
That would be true if behavior-analytic mod-
elers wanted to claim that the implementa-
tion details of their models had the status of
intraorganismic events, but that claim is gen-
erally disavowed and of secondary interest at
most. Behavioral theorists and modelers al-
ready have a daunting enough challenge to
produce comprehensive behavioral models,
and find behavior-level modeling very con-
genial. Donahoe et al. cite Skinner’s point
(1938, p. 432) that nothing learned about the

physiology of behavior can ever undermine
valid behavioral laws. We can turn the tables
even further and assert that any model that
is not behaviorally plausible cannot be neu-
rally plausible. We have learned a great deal
about adaptive system processes from work
with neural network models that were devel-
oped without concern for biology or behav-
ior, including the most common model in the
field, backpropagation, which was invented as
a mathematical method to extend linear re-
gression (Werbos, 1974).

Because they restrict themselves to neurally
plausible elements, Donahoe et al.’s model
(their Figure 2) is an incomplete subsystem.
One obvious missing element is a function
relating the dopamine injections to occur-
rences of primary and secondary conse-
quences of various kinds, magnitudes, and
delays, that is, behavioral economic relations.
Because the neural data they cite require that
the injection occur within 200 ms, there is a
significant challenge to reconcile that with
the timing of consequences in the real world.
Other missing elements seem to be necessary,
such as a mechanism for the system’s re-
sponses to function as stimuli even when the
responses do not change the environment in
a perceptible way.

I raise these examples of the incomplete-
ness of Donahoe et al.’s model not to criticize
what they have done, but to focus attention
on an important consequence of a strict neu-
ral plausibility criterion. Subsystems are valu-
able, but some of the conclusions Donahoe
et al. reach cannot be made on the basis of a
subsystem. Specifically, although two of their
conclusions are correct for the subsystem,
they are invalid for complete behavioral sys-
tem models and, by implication, for animals.
These two elements of the simulation are es-
pecially relevant because behavior analysts
who use computer models have to make prac-
tical choices about both of them.

Are Linear Models Wrong?

The authors argue (p. 203) that direct sen-
sory-to-motor associations are not observed in
brains. However, direct control mechanisms
evolved very early and have many advantages:
Learning is far simpler, much faster, requires
far fewer resources, and usually shows more
robust generalization to new situations. Ani-
mals learn more quickly on most problems
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than hidden-layer neural network models do,
with acquisition processes that in my judg-
ment resemble those of linear models much
more than hidden-layer models. Another line
of evidence is the success of linear modeling
in real-world relationships, which has been
extremely successful (Dawes, 1979), with little
need in most cases for the addition of non-
linear elements. It seems implausible that an
evolutionary process would lead to the loss of
such a simple and effective mechanism and
the imposition of intermediate layers (two in
the Donahoe et al. model) for all learning,
with these huge disadvantages. Far more like-
ly would be the addition of mechanisms for
combinatorial learning into the existing, very
effective architecture.

We could take our skepticism even further
and question whether hidden units are nec-
essary at all in an adaptive system. The au-
thors acknowledge that linear networks can
learn a surprising range of relationships, but
they agree with most theorists that Minsky
and Papert (1969) proved that hidden units
were necessary for certain kinds of situations,
including the prototypical combinatorial
problem, exclusive-OR (XOR) (p. 203). How-
ever, Minsky and Papert proved their point
only for a subsystem limited in critical ways
like Donahoe et al.’s, whereas I have long ar-
gued that there are behavior-level theories
that are sufficient to explain how an operant
system could solve such problems without
hidden nodes. I simulated two of these for-
mulations specifically for the present com-
mentary.

The first simulation (Hutchison, 1997,
XOR) shows how response-produced stimuli
enable a linear network to behave in multiple
time steps like a network with hidden nodes.
I added four additional responses to Minsky
and Papert’s ‘‘yes’’ and ‘‘no’’ responses, and
gave the system sensors activated by the emis-
sion of its own responses. Any four responses
would work, but the simulation used motor
responses, which would tend to occur natu-
rally upon presentation of spatially separated
stimuli. I presented the four XOR cases in
random order, and the system learned to
emit one of the motor responses to each stim-
ulus pattern (e.g., move left when only the
left stimulus was presented, move forward
when both stimuli were presented) as its ini-
tial response. The next time step, the system

emitted the correct yes-no response with per-
fect accuracy under control of the stimulus
produced by its prior response. The function
of hidden layers was performed by repeated
activity of the linear system.

The second simulation (Hutchison, 1997,
Match) showed yet another behavioral pro-
cess that solves not only XOR but a much
broader class of nonlinear problems such as
matching to sample (MTS) and delayed MTS
within a linear network. The central behav-
ioral formulation of this simulation is closely
related to Lowenkron’s concept of joint control
(1991), which is a special case of combining
separately conditioned antecedents (Rescorla
& Wagner, 1972) if we accept the equivalence
of respondent and operant conditioning, as
Donahoe et al. advocate. Unlike Donahoe et
al.’s passive subsystem, a behaving system
does not have to sense both (more generally,
all) the stimuli simultaneously and respond
instantaneously. It can, and often must, sense
the stimuli in sequence (e.g., looking at one
after another) and respond to them in se-
quence, sometimes with a delay. Its own re-
sponses become part of the stimuli that con-
trol subsequent responses. Lowenkron
discusses verbal tact and self-echoic re-
sponses, but the analysis applies more gen-
erally to any discriminated and self-repeti-
tious responses and to many types of stimuli
and experimental arrangements.

I trained a simulated organism with no hid-
den units to tact each of four different stim-
uli, and then to self-echo the tact if a new
stimulus was not presented. The eight com-
binations of two pairs of the stimuli (AA, AB,
BA, BB, CC, CD, DC) were then presented in
random order. In each case, the system tacted
the first stimulus presented (e.g., A), after
which the second stimulus was presented (A
or B). If the second stimulus was the same as
the first, the same response was emitted with
increased strength due to the joint stimulus
control as a tact and self-echoic. Conversely,
when the two stimuli were different, the new
external stimulus was an SD for the self-echoic
response (i.e., tacting A was weakened by pre-
sentation of the stimulus for B due to prior
consequences for that relation), whereas the
stimulus produced by the system’s own pre-
vious tact was an SD for the second tact. This
reliable difference in strength transitions al-
ways occurred before the system was required
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to emit its response indicating same or dif-
ferent, so reinforcement of correct same-dif-
ferent responses produced effective stimulus
control by that event within 100 trials. When
delays were introduced between presentation
of the two stimuli, the system still produced
the correct answers by emitting self-echoics
during the delay, as we assume humans often
do.

This process has important advantages over
hidden-unit solutions. The system can almost
immediately discriminate matches for any
new pairs of stimuli it can tact. No additional
training is necessary, because the stimulus
control is by a property that is independent
of the particular stimuli. This process seems
to help explain many instances of complex
behavior that are otherwise difficult to ex-
plain, such as parity (Palmer, 1996).

These two demonstrations do not prove
that combinatorial nodes and neurons do not
exist (they probably do), but the simulations
thoroughly refute the claimed necessity of
such elements in the prototypical case, XOR,
and even in the more difficult delayed MTS
case.

Is Spontaneous Noise Necessar y?

The second point on which I believe work-
ing with a subsystem has led Donahoe et al.
to an erroneous conclusion is that spontane-
ous activity is a necessary property of neurons
(p. 208). At the beginning of my simulation
work I programmed a mechanism for inject-
ing spontaneous noise into my deterministic
model, both because seemingly random vari-
ations exist in animal behavior and because
theoretical analysis shows that noise is neces-
sary to avoid behavior being trapped in lo-
cally optimal but globally suboptimal pat-
terns. These local optimum problems do
require noise, and for a subsystem such as
Donahoe et al.’s it must be added externally,
as they concluded. However, in a complete
behavioral model the variability in real-world
data combines with the variability produced
by the many dynamic (chaotic?) processes of
the environment–behavior system to produce
variability that resembles spontaneous noise.
The dynamic effects include response-pro-
duced environmental changes, orienting re-
sponse-produced sensory changes, antece-
dent control by previous responses, and
continuous changes in behavioral relations

from learning—all mentioned by Donahoe et
al. All my simulations (Hutchison, 1997)
show this variability, which anyone replicating
them can track to its specific sources by ex-
amining the behavioral relations inside the
system—a luxury not yet available with living
subjects. The system’s behavior has exhibited
enough of this variability to solve a wide
range of problems without adding any ran-
dom noise to its deterministic behavior. Of
course, living organisms do get trapped by lo-
cal optima in some conditions, so our chal-
lenge is not to produce optimal models but
models that behave like animals. Some intra-
cellular noise may occur in living systems, but
the necessity of spontaneous noise in behav-
ioral process has not been proven and will
probably be difficult to prove.

Problems with Emphasizing Neural
Plausibility

From these examples, there are two draw-
backs of emphasizing biological plausibility.
First, it restricts practitioners to relatively sim-
ple subsystems, from which wrong conclu-
sions may be drawn. Second, it may provide
misleading suggestions about functional re-
lationships. For example, I do not doubt
Donahoe et al.’s assertion that in human
brains, sensory neurons do not connect di-
rectly to motor neurons. But the apparent
model design recommendations from this an-
atomical datum may be incorrect. This does
not diminish the value of Donahoe et al.’s
emphasis; rather, it affirms it. Only research-
ers with their joint behavioral and biological
emphasis would be likely to notice the incon-
sistency, and it would direct their research
very specifically. In the example of direct con-
nections, they might look for ways in which
the brain manages to behave as though it had
direct connections. This would happen if
many of the sensory association neurons were
activated by simple sensory inputs and many
of their motor association neurons activated
simple responses, thereby mimicking a linear
system.

I encourage theorists to use computer
models to ask any kind of ‘‘what if?’’ question
that seems to be worth the effort. Some may
be concerned that this freedom from neural
constraints, like freedom of speech, might de-
grade into anarchy. However, as with free
speech, the audiences for published simula-
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tions can judge for themselves what conclu-
sions should be drawn from them. In our cur-
rent state of knowledge, it is usually more
productive to suspend judgment about the
plausibility of assumptions and instead focus
on the plausibility of the conclusions they
produce in simulations—usually a much eas-
ier assessment. If the conclusions (the behav-
ior in various situations) are implausible,
then the assumptions as a set are implausible.

Behavior analysis does not have a complete
system model that incorporates all the envi-
ronment–behavioral relations we have discov-
ered to predict accurately the range of be-
havior we observe. We can hope that
neuroscience will provide suggestive analo-
gies and a basis for preferring certain ele-
ments of our model, but we cannot afford to
be restricted by dubious neural plausibility
considerations at this stage. Only after we
have more than one effective behavioral
model will we have the need—or the luxu-
ry—to choose among them. Such models will
be of great value to both behavior analysts
and neuroscientists.
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